AD-A071 732 CORNELL UNIV ITHACA N Y SCHOOL OF ELECTRICAL ENGINEERING F/G 20/12 RECTIFICATION AT N-N GAAS: (GA, AL)AS HETEROJUNCTIONS, (U) JUN 79 A CHANDRA, L F EASTMAN N00014-75-C-0739 NL

DATE FILMED 8-79

And the second s	Simple of the second second second		明的自然的意思所有的思想的自然的 自然和	THE SOURCE SHARE PROPERTY AND THE PARTY OF THE PARTY OF THE SPECIAL PROPERTY OF THE PARTY OF THE	and an indian
RECTIFICATION AT n-1	r Public 14-75-C-0 22 June 1 GaAs:	(Ga,Al)As	HETEROS man	JUNCTIONS (12)	>
n-n Ga. 7Al. 3As: Gabeen grown by LPE, with	ABSTRA	CT se	Y. 14853	cures have	
ternary. N-W profiling	T				
an accumulation region	on the	GaAs side	and a	lepletion	
region on the(Ga,Al)As side. I-V characteristics at room					
temperature show significant rectification.					
(18 to the 15th grower)					
Accession For NTIS GRA&I DDC TAB Unannounced Justification					
Er				DDC DECEMPED JUL 26 1979 DEGET TE	
	79	07	16	145	
	1	Ø988	750	4/2	3

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Introduction: A metallurgically abrupt heterojunction between n GaAs and n $\text{Ga}_{1-x}^{Al} A^{l}$ is expected to have a barrier in the conduction band edge, as shown in Fig. 1.^{1,2} Current transport across this heterojunction is expected to be relatively free of the influence of interface states, whose density has been measured by Lang et al³ to be less than $\approx 10^9$ cm⁻². Theoretically, therefore, thin n-n heterojunction should show rectification corresponding to a barrier height of \sim .3 eV at x = 30%.² In addition, the barrier at a n GaAs-n⁻ (Ga,Al)As heterojunction should provide abrupt confinement of electrons to the GaAs side, as required in certain device concepts.⁴ The rectification can therefore serve as an indicator for how effective the heterojunction is in confining electrons.

Such rectification, however, to our knowledge has not yet been reported, though Womak and Rediker⁵ observed non ohmic behavior and rectification ratios of about 5:1 on a few percent of the samples examined by them. It has been suggested that the lack of a rectifying barrier is due to a metallurgical grading of the junction. For a given interface transistion width, the higher the net doping in the $Ga_{1-x}Al_xAs$, the greater is the reduction of the barrier height. In attempting to obtain a rectifying barrier, therefore, both the transition width and the (Ga,Al)As net doping

should be made as low as possible.

Using Auger techniques, Garner et al. 6 have measured the 10-90% Al transition widths (L_c) of (Ga,Al)As: GaAs heterojunctions obtained by growing a few hundred angstroms of (Ga,Al)As on GaAs substrates by LPE. They obtain $^{\sim}125^{\rm A}$ for LPE at 800°C and 100Å for LPE at 750°C. Since the heterojunction width is attributed to kinetic effects at the initiation of growth rather than the subsequent diffusion of aluminum, 5,6 it is expected that the transition width will not be any higher if thicker layers involving longer growth times are used. Furthermore, our LPE was done at $^{700°C}$, and 6 can be expected to be even lower than $^{100°A}$.

We have achieved repeatable purity in $Ga_{1-x}Al_xAs$, obtaining $\sim 1x10^{15}$ cm⁻³ in $Ga_{1-7}Al_{3}As$, and as low as $2.7x10^{14}$ cm⁻³ in $Ga_{84}Al_{16}As$. Using such high purity $Ga_{1-x}Al_xAs$ layers in heterostructures, we have obtained significant rectification.

Experiment: The heterostructures grown and studied are shown in Fig. 2. They were grown on n⁺ GaAs:Te substrates by LPE at 700°C using a multiple well graphite boat and the sliding technique. The heterojunction between the Ga_{1-x}Al_xAs layer and the n⁺ substrate was found to be essentially ohmic and low resistance. This was expected due to the high defect density at the interface, including the outdiffusion of donors from the substrate to a few

hundred angstroms in the layer. The GaAs adjacent to the 10^{15} n $\text{Ga.}_{7}\text{Al.}_{3}\text{As}$, at the heterojunction being studied, was doped $<10^{15}$ cm⁻³ in case (i), and 10^{17} cm⁻³ in case (ii). The 10^{17} n GaAs layer in case (i) was to prevent the low doped GaAs layer from being fully depleted at zero bias, and to provide a low resistance ohmic contact.

Samples were prepared for N-W profiling by using the self limiting anodic etch technique. 8 The voltage used (90V) was greater than the breakdown voltage of the 1017 n: GaAs layer, but was less than the B-V of the 1015 doped layers. This etching technique would enable the subsequently deposited Schottky barriers to punch through to the n+ substrate before breakdown. After the etching, a tin dot was alloyed on the surface to form the ohmic back contact, following which gold Schottky dots were evaporated at pressures <10-6 Torr. N-W measurements were taken on an MSI junction profiler. The samples for I-V studies were prepared by evaporating Au-Ge-Ni dots with a gold over-lay, on the 1017 n: GaAs epilayer. The back contact to the n+ substrate was obtained either by depositing the Au-Ge-Ni and Au on the back side, or by etching off the epilayers over a limited area to expose the n substrate, and depositing ohmic dots. After the depositions, the contacts were alloyed at ~\$60°C for 20 sec. Finally, mesas were

etched in ${\rm H_2O_2:NH_4OH}$ (10:1) at $50^{\rm O}{\rm C}$ for ${\sim}20\text{--}30$ sec., using the alloyed dots as protective masks.

Results and Discussion: Fig. 3(i) shows the typical doping vs. depth profile obtained for the structure shown in Fig. 2(i). It clearly shows an accumulation region followed by a depletion region, as is expected for the n-GaAs - n (Ga,Al) As heterojucation. The presence of the former, shows that the interface barrier is not of the back to bac Schottky type as described in Reference 9. The N-W profile for the second structure (Fig 2(ii)) showed a depletion region in the n-(Ga,Al)As, as expected, but no definite accumulation region in the 10¹⁷ n GaAs.

No depletion region is observed in the (Ga,Al)As at its interface with the n^+ substrate, suggesting that interface to be ohmic.

Fig. 4 shows typical I-V characteristics obtained at room temperature for devices of type (i). The n⁺ substrate was grounded in all these measurements, and the voltage V applied to the n:10¹⁷ GaAs ohmic contact. Before etching the mesas, the I-V characteristics across various pairs of ohmic dots on the layers were tested and were always found to be ohmic with a resistiance between 15 and 25 ohms. Similarly, ohmic dots on the n⁺ substrate gave ohmic resistances of ~2-5 ohms. The I-V characteristics obtained for

type (ii) devices were very similar, though slightly less rectifying (about 15% less).

Acknowledgements: The authors would like to thank Mr.

J.D. Berry for preparing the ohmic contacts and the

Schottky barriers, and the Office of Naval Research under

Contract Number N00014-75-C-0739 for supporting this work.

A. Chandra

L.F. Eastman

School of Electrical Engineering Cornell University, Ithaca, N.Y. 14853

References:

- Oldman, W.G. and Milnes, A.G., "n-n Semiconductor Heterojunctions", Sol. State Electron., 1963, 6, pp. 121-132.
- 2) Dingle, R., Wiegamnn, W. and Henry, C.H., "Quantum States of Confined Carriers in Very Thin AlGa_{1-x}As -GaAs-AlGa_{1-x}As Heterstructures" Phys. Rev. Lett., 1974, 33, p. 827.
- 3) Lang, D.V. and Logan R.A., "A Search for Interface States in an LPE GaAs/Al_xGa_{1-x}As Heterojunction", Appl. Phys. Letters, 15 Nov. 1977, V. 31, No. 10, p. 683.
- 4) Chandra, A. and Eastman, L.F., "The Use of Ga_{1-x}Al_xAs-GaAs Interface for Electron Confinement in Low Noise FETs", presented at the Workshop on Compound Semiconductor Materials and Devices, San Francisco, Feb. 1978.
- 5) Womak, J.F. and Rediker, R.H., "The Graded Gap Al_xGa_{1-x}As-GaAs Heterojunction", J. Appl. Phys., 1972, V. 43, No. 10, p. 4129.
- 6) Garner, C.M. Shen, Y.D., Kim, J.S., Pearson, G.L., Harris, Jr., J.S. and Edwall, D.D., "Auger Profiling of Abrupt LPE Al_xGa_{1-x}As-GaAs Heterojunctions", J. Appl. Phys., 1977, V. 48, No. 7, p. 3147.
- 7) Chandra, A. and Eastman, L.F., "Growth of High Purity Ga_{1-x}Al_xAs by Liquid Phase Epitaxy", to be published.
- 8) Niehaus, W.C. and Schwartz, B., "A Self-Limiting Anodic Etch-to-Voltage (AETV) Technique for Fabrication of Modified Read-IMPATTs", Sol. State Electronics, 1976, 19, p. 175.
- Oldham, W.G. and Milnes, A.G., "Interface States in Abrupt Semiconductor Heterojunctions", Sol. State Electronics, 1964, 1, p. 153.

List of Illustrations

- Fig. 1 Conduction band across abrupt heterojunction between n:GaAs and n: $Ga_{1-x}^{Al}A^{l}$.
- Fig. 2 The two heterostructures examined. The arrow shows the relevant heterojunctions.
- Fig. 3 Schottky N-W profiles obtained on heterostructures and their interpretations.
- Fig. 4 Typical I-V characteristics obtained for type (i) heterostructure, shown on two different scales. The voltage was applied to the n GaAs epilayer w.r.t. the substrate.

Gade : n, 10¹⁷
Gade : n, 10¹⁸
Gandlate : n, 10¹⁸

Gas : n, :CI7

Ga-Algas : n, :OIS

Gaa(Te) : n* superrore

(ii)

(1)

THIS PAGE IS BEST QUALIFIT PRAPTICABLE

THIS PAGE IS BEST QUALITY PRACTICABLE
THIS PAGE IS BEST QUALITY PRACTICABLE
TROOM OUPLY PLEASESHED TO BE

